Published by Pearson (February 22, 2021) © 2021

Bernard Sklar
    VitalSource eTextbook (Lifetime access)
    €89,99
    Adding to cart… The item has been added
    ISBN-13: 9780134588643

    Digital Communications: Fundamentals and Applications ,3rd edition

    Language: English

    The Best-Selling Introduction to Digital Communications: Thoroughly Revised and Updated for OFDM, MIMO, LTE, and More


    With remarkable clarity, Drs. Bernard Sklar and fred harris introduce every digital communication technology at the heart of today's wireless and Internet revolutions, with completely new chapters on synchronization, OFDM, and MIMO.


    Building on the field's classic, best-selling introduction, the authors provide a unified structure and context for helping students and professional engineers understand each technology, without sacrificing mathematical precision. They illuminate the big picture and details of modulation, coding, and signal processing, tracing signals and processing steps from information source through sink. Throughout, readers will find numeric examples, step-by-step implementation guidance, and diagrams that place key concepts in clear context.

    • Understand signals, spectra, modulation, demodulation, detection, communication links, system link budgets, synchronization, fading, and other key concepts
    • Apply channel coding techniques, including advanced turbo coding and LDPC
    • Explore multiplexing, multiple access, and spread spectrum concepts and techniques
    • Learn about source coding: amplitude quantizing, differential PCM, and adaptive prediction
    • Discover the essentials and applications of synchronization, OFDM, and MIMO technology

    More than ever, this is an ideal resource for practicing electrical engineers and students who want a practical, accessible introduction to modern digital communications.

    This Third Edition includes online access to additional examples and material on the book's website.

    Preface     xxiii

    Chapter 1  SIGNALS AND SPECTRA     1

    1.1 Digital Communication Signal Processing     2

        1.1.1 Why Digital?     2

        1.1.2 Typical Block Diagram and Transformations     4

        1.1.3 Basic Digital Communication Nomenclature     7

        1.1.4 Digital Versus Analog Performance Criteria     9

    1.2 Classification of Signals     10

        1.2.1 Deterministic and Random Signals     10

        1.2.2 Periodic and Nonperiodic Signals     10

        1.2.3 Analog and Discrete Signals     10

        1.2.4 Energy and Power Signals     11

        1.2.5 The Unit Impulse Function     12

    1.3 Spectral Density     13

        1.3.1 Energy Spectral Density     13

        1.3.2 Power Spectral Density     14

    1.4 Autocorrelation     15

        1.4.1 Autocorrelation of an Energy Signal     10

        1.4.2 Autocorrelation of a Periodic (Power) Signal     16

    1.5 Random Signals     17

        1.5.1 Random Variables     17

        1.5.2 Random Processes     19

        1.5.3 Time Averaging and Ergodicity     21

        1.5.4 Power Spectral Density and Autocorrelation of a Random Process     22

        1.5.5 Noise in Communication Systems     27

    1.6 Signal Transmission Through Linear Systems     30

        1.6.1 Impulse Response     30

        1.6.2 Frequency Transfer Function     31

        1.6.3 Distortionless Transmission     32

        1.6.4 Signals, Circuits, and Spectra     39

    1.7 Bandwidth of Digital Data     41

        1.7.1 Baseband Versus Bandpass     41`

        1.7.2 The Bandwidth Dilemma     44

    1.8 Conclusion     47

    Chapter 2  FORMATTING AND BASEBAND MODULATION     53

    2.1 Baseband Systems     54

    2.2 Formatting Textual Data (Character Coding)     55

    2.3 Messages, Characters, and Symbols     55

        2.3.1 Example of Messages, Characters, and Symbols     56

    2.4 Formatting Analog Information     57

        2.4.1 The Sampling Theorem     57

        2.4.2 Aliasing     64

        2.4.3 Why Oversample?     67

        2.4.4 Signal Interface for a Digital System     69

    2.5 Sources of Corruption     70

        2.5.1 Sampling and Quantizing Effects     71

        2.5.2 Channel Effects     71

        2.5.3 Signal-to-Noise Ratio for Quantized Pulses     72

    2.6 Pulse Code Modulation     73

    2.7 Uniform and Nonuniform Quantization     75

            2.7.1 Statistics of Speech Amplitudes     75

            2.7.2 Nonuniform Quantization     77

            2.7.3 Companding Characteristics     77

    2.8 Baseband Transmission     79

        2.8.1 Waveform Representation of Binary Digits     79

        2.8.2 PCM Waveform Types     80

        2.8.3 Spectral Attributes of PCM Waveforms     83

        2.8.4 Bits per PCM Word and Bits per Symbol     84

        2.8.5 M-ary Pulse-Modulation Waveforms     86

    2.9 Correlative Coding     88

        2.9.1 Duobinary Signaling     88

        2.9.2 Duobinary Decoding     89

        2.9.3 Precoding     90

        2.9.4 Duobinary Equivalent Transfer Function     91

        2.9.5 Comparison of Binary and Duobinary Signaling     93

        2.9.6 Polybinary Signaling     94

    2.10 Conclusion     94

    Chapter 3  BASEBAND DEMODULATION/DETECTION     99

    3.1 Signals and Noise     100

        3.1.1 Error-Performance Degradation in Communication Systems     100

        3.1.2 Demodulation and Detection     101

        3.1.3 A Vectorial View of Signals and Noise     105

        3.1.4 The Basic SNR Parameter for Digital Communication Systems     112

        3.1.5 Why Eb /N0 Is a Natural Figure of Merit     113

    3.2 Detection of Binary Signals in Gaussian Noise     114

        3.2.1 Maximum Likelihood Receiver Structure     114

        3.2.2 The Matched Filter     117

        3.2.3 Correlation Realization of the Matched Filter     119

        3.2.4 Optimizing Error Performance     122

        3.2.5 Error Probability Performance of Binary Signaling     126

    3.3 Intersymbol Interference     130

        3.3.1 Pulse Shaping to Reduce ISI     133

        3.3.2 Two Types of Error-Performance Degradation     136

        3.3.3 Demodulation/Detection of Shaped Pulses     140

    3.4 Equalization     144

        3.4.1 Channel Characterization     144

        3.4.2 Eye Pattern     145

        3.4.3 Equalizer Filter Types     146

        3.4.4 Preset and Adaptive Equalization     152

        3.4.5 Filter Update Rate     155

    3.5 Conclusion     156

    Chapter 4  BANDPASS MODULATION AND DEMODULATION/DETECTION     161

    4.1 Why Modulate?     162

    4.2 Digital Bandpass Modulation Techniques     162

        4.2.1 Phasor Representation of a Sinusoid     163

        4.2.2 Phase-Shift Keying     166

        4.2.3 Frequency-Shift Keying     167

        4.2.4 Amplitude Shift Keying     167

        4.2.5 Amplitude-Phase Keying     168

        4.2.6 Waveform Amplitude Coefficient     168

    4.3 Detection of Signals in Gaussian Noise     169

        4.3.1 Decision Regions     169

        4.3.2 Correlation Receiver     170

    4.4 Coherent Detection     175

        4.4.1 Coherent Detection of PSK     175

        4.4.2 Sampled Matched Filter     176

        4.4.3 Coherent Detection of Multiple Phase-Shift Keying     181

        4.4.4 Coherent Detection of FSK     184

    4.5 Noncoherent Detection     187

        4.5.1 Detection of Differential PSK     187

        4.5.2 Binary Differential PSK Example     188

        4.5.3 Noncoherent Detection of FSK     190

        4.5.4 Required Tone Spacing for Noncoherent Orthogonal FSK Signaling     192

    4.6 Complex Envelope     196

        4.6.1 Quadrature Implementation of a Modulator     197

        4.6.2 D8PSK Modulator Example     198

        4.6.3 D8PSK Demodulator Example     200

    4.7 Error Performance for Binary Systems     202

        4.7.1 Probability of Bit Error for Coherently Detected BPSK     202

        4.7.2 Probability of Bit Error for Coherently Detected, Differentially Encoded Binary PSK     204

        4.7.3 Probability of Bit Error for Coherently Detected Binary Orthogonal FSK     204

        4.7.4 Probability of Bit Error for Noncoherently Detected Binary Orthogonal FSK     206

        4.7.5 Probability of Bit Error for Binary DPSK     208

        4.7.6 Comparison of Bit-Error Performance for Various Modulation Types     210

    4.8 M-ary Signaling and Performance     211

        4.8.1 Ideal Probability of Bit-Error Performance     211

        4.8.2 M-ary Signaling     212

        4.8.3 Vectorial View of MPSK Signaling     214

        4.8.4 BPSK and QPSK Have the Same Bit-Error Probability     216

        4.8.5 Vectorial View of MFSK Signaling     217

    4.9 Symbol Error Performance for M-ary Systems (M > 2)     221

        4.9.1 Probability of Symbol Error for MPSK     221

        4.9.2 Probability of Symbol Error for MFSK     222

        4.9.3 Bit-Error Probability Versus Symbol Error Probability for Orthogonal Signals     223

        4.9.4 Bit-Error Probability Versus Symbol Error Probability for Multiple-Phase Signaling     226

        4.9.5 Effects of Intersymbol Interference     228

    4.10 Conclusion     228

    Chapter 5  COMMUNICATIONS LINK ANALYSIS     235

    5.1 What the System Link Budget Tells the System Engineer     236

    5.2 The Channel     236

        5.2.1 The Concept of Free Space     237

        5.2.2 Error-Performance Degradation     237

        5.2.3 Sources of Signal Loss and Noise     238

    5.3 Received Signal Power and Noise Power     243

        5.3.1 The Range Equation     243

        5.3.2 Received Signal Power as a Function of Frequency     247

        5.3.3 Path Loss Is Frequency Dependent     248

        5.3.4 Thermal Noise Power     250

    5.4 Link Budget Analysis     252

        5.4.1 Two Eb /N0 Values of Interest     254

        5.4.2 Link Budgets Are Typically Calculated in Decibels     256

        5.4.3 How Much Link Margin Is Enough?     257

        5.4.4 Link Availability     258

    5.5 Noise Figure, Noise Temperature, and System Temperature     263

        5.5.1 Noise Figure     263

        5.5.2 Noise Temperature     265

        5.5.3 Line Loss     266

        5.5.4 Composite Noise Figure and Composite Noise Temperature     269

        5.5.5 System Effective Temperature     270

        5.5.6 Sky Noise Temperature     275

    5.6 Sample Link Analysis     279

        5.6.1 Link Budget Details     279

        5.6.2 Receiver Figure of Merit     282

        5.6.3 Received Isotropic Power     282

    5.7 Satellite Repeaters     283

        5.7.1 Nonregenerative Repeaters     283

        5.7.2 Nonlinear Repeater Amplifiers     288

    5.8 System Trade-Offs     289

    5.9 Conclusion     290

    Chapter 6  CHANNEL CODING: PART 1: WAVEFORM CODES AND BLOCK CODES     297

    6.1 Waveform Coding and Structured Sequences     298

        6.1.1 Antipodal and Orthogonal Signals     298

        6.1.2 M-ary Signaling     300

        6.1.3 Waveform Coding     300

        6.1.4 Waveform-Coding System Example     304

    6.2 Types of Error Control     307

        6.2.1 Terminal Connectivity     307

        6.2.2 Automatic Repeat Request     307

    6.3 Structured Sequences     309

        6.3.1 Channel Models     309

        6.3.2 Code Rate and Redundancy     311

        6.3.3 Parity-Check Codes     312

        6.3.4 Why Use Error-Correction Coding?     315

    6.4 Linear Block Codes     320

        6.4.1 Vector Spaces     320

        6.4.2 Vector Subspaces     321

        6.4.3 A (6, 3) Linear Block Code Example     322

        6.4.4 Generator Matrix     323

        6.4.5 Systematic Linear Block Codes     325

        6.4.6 Parity-Check Matrix     326

        6.4.7 Syndrome Testing     327

        6.4.8 Error Correction     329

        6.4.9 Decoder Implementation     332

    6.5 Error-Detecting and Error-Correcting Capability     334

        6.5.1 Weight and Distance of Binary Vectors     334

        6.5.2 Minimum Distance of a Linear Code     335

        6.5.3 Error Detection and Correction     335

        6.5.4 Visualization of a 6-Tuple Space     339

        6.5.5 Erasure Correction     341

    6.6 Usefulness of the Standard Array     342

        6.6.1 Estimating Code Capability     342

        6.6.2 An (n, k) Example     343

        6.6.3 Designing the (8, 2) Code     344

        6.6.4 Error Detection Versus Error Correction Trade-Offs     345

        6.6.5 The Standard Array Provides Insight     347

    6.7 Cyclic Codes     349

        6.7.1 Algebraic Structure of Cyclic Codes     349

        6.7.2 Binary Cyclic Code Properties     351

        6.7.3 Encoding in Systematic Form     352

        6.7.4 Circuit for Dividing Polynomials     353

        6.7.5 Systematic Encoding with an (n ? k)-Stage Shift Register     356

        6.7.6 Error Detection with an (n ? k)-Stage Shift Register     358

    6.8 Well-Known Block Codes     359

        6.8.1 Hamming Codes     359

        6.8.2 Extended Golay Code     361

        6.8.3 BCH Codes     363

    6.9 Conclusion     367

    Chapter 7  CHANNEL CODING: PART 2: CONVOLUTIONAL CODES AND REED–SOLOMON CODES     375

    7.1 Convolutional Encoding     376

    7.2 Convolutional Encoder Representation     378

        7.2.1 Connection Representation     378

        7.2.2 State Representation and the State Diagram     382

        7.2.3 The Tree Diagram     385

        7.2.4 The Trellis Diagram     385

    7.3 Formulation of the Convolutional Decoding Problem     388

        7.3.1 Maximum Likelihood Decoding     388

        7.3.2 Channel Models: Hard Versus Soft Decisions     390

        7.3.3 The Viterbi Convolutional Decoding Algorithm     394

        7.3.4 An Example of Viterbi Convolutional Decoding     394

        7.3.5 Decoder Implementation     398

        7.3.6 Path Memory and Synchronization     401

    7.4 Properties of Convolutional Codes     402

        7.4.1 Distance Properties of Convolutional Codes     402

        7.4.2 Systematic and Nonsystematic Convolutional Codes     406

        7.4.3 Catastrophic Error Propagation in Convolutional Codes     407

        7.4.4 Performance Bounds for Convolutional Codes     408

        7.4.5 Coding Gain     409

        7.4.6 Best-Known Convolutional Codes     411

        7.4.7 Convolutional Code Rate Trade-Off     413

        7.4.8 Soft-Decision Viterbi Decoding     413

    7.5 Other Convolutional Decoding Algorithms     415

        7.5.1 Sequential Decoding     415

        7.5.2 Comparisons and Limitations of Viterbi and Sequential Decoding     418

        7.5.3 Feedback Decoding     419

    7.6 Reed–Solomon Codes     421

        7.6.1 Reed–Solomon Error Probability     423

        7.6.2 Why R–S Codes Perform Well Against Burst Noise     426

        7.6.3 R–S Performance as a Function of Size, Redundancy, and Code Rate     426

        7.6.4 Finite Fields     429

        7.6.5 Reed–Solomon Encoding     435

        7.6.6 Reed–Solomon Decoding     439

    7.7 Interleaving and Concatenated Codes     446

        7.7.1 Block Interleaving     449

        7.7.2 Convolutional Interleaving     452

        7.7.3 Concatenated Codes     453

    7.8 Coding and Interleaving Applied to the Compact Disc Digital Audio System     454

        7.8.1 CIRC Encoding     456

        7.8.2 CIRC Decoding     458

        7.8.3 Interpolation and Muting     460

    7.9 Conclusion     462

    Chapter 8  CHANNEL CODING: PART 3: TURBO CODES AND LOW-DENSITY PARITY CHECK (LDPC) CODES     471

    8.1 Turbo Codes     472

        8.1.1 Turbo Code Concepts     472

        8.1.2 Log-Likelihood Algebra     476

        8.1.3 Product Code Example     477

        8.1.4 Encoding with Recursive Systematic Codes     484

        8.1.5 A Feedback Decoder     489

        8.1.6 The MAP Algorithm     493

        8.1.7 MAP Decoding Example     499

    8.2 Low-Density Parity Check (LDPC) Codes     504

        8.2.1 Background and Overview     504

        8.2.2 The Parity-Check Matrix     505

        8.2.3 Finding the Best-Performing Codes     507

        8.2.4 Decoding: An Overview     509

        8.2.5 Mathematical Foundations     514

        8.2.6 Decoding in the Probability Domain     518

        8.2.7 Decoding in the Logarithmic Domain     526

        8.2.8 Reduced-Complexity Decoders     531

        8.2.9 LDPC Performance     532

        8.2.10 Conclusion     535

    Appendix 8A: The Sum of Log-Likelihood Ratios     535

    Appendix 8B: Using Bayes' Theorem to Simplify the Bit Conditional Probability     537

    Appendix 8C: Probability that a Binary Sequence Contains an Even Number of Ones     537

    Appendix 8D: Simplified Expression for the Hyperbolic Tangent of the Natural Log of a Ratio of Binary Probabilities     538

    Appendix 8E: Proof that phi(x) = phi^-1(x)     538

    Appendix 8F: Bit Probability Initialization     539

    Chapter 9  MODULATION AND CODING TRADE-OFFS     549

    9.1 Goals of the Communication System Designer     550

    9.2 Error-Probability Plane     550

    9.3 Nyquist Minimum Bandwidth     552

    9.4 Shannon–Hartley Capacity Theorem     554

        9.4.1 Shannon Limit     556

        9.4.2 Entropy     557

        9.4.3 Equivocation and Effective Transmission Rate     560

    9.5 Bandwidth-Efficiency Plane     562

        9.5.1 Bandwidth Efficiency of MPSK and MFSK Modulation     563

        9.5.2 Analogies Between the Bandwidth-Efficiency and Error-Probability Planes     564

    9.6 Modulation and Coding Trade-Offs     565

    9.7 Defining, Designing, and Evaluating Digital Communication

    Systems     566

        9.7.1 M-ary Signaling     567

        9.7.2 Bandwidth-Limited Systems     568

        9.7.3 Power-Limited Systems     569

        9.7.4 Requirements for MPSK and MFSK Signaling     570

        9.7.5 Bandwidth-Limited Uncoded System Example     571

        9.7.6 Power-Limited Uncoded System Example     573

        9.7.7 Bandwidth-Limited and Power-Limited Coded System Example     575

    9.8 Bandwidth-Efficient Modulation     583

        9.8.1 QPSK and Offset QPSK Signaling     583

        9.8.2 Minimum-Shift Keying     587

        9.8.3 Quadrature Amplitude Modulation     591

    9.9 Trellis-Coded Modulation     594

        9.9.1 The Idea Behind Trellis-Coded Modulation     595

        9.9.2 TCM Encoding     597

        9.9.3 TCM Decoding     601

        9.9.4 Other Trellis Codes     604

        9.9.5 Trellis-Coded Modulation Example     606

        9.9.6 Multidimensional Trellis-Coded Modulation     610

    9.10 Conclusion     610

    Chapter 10  SYNCHRONIZATION     619

    10.1 Receiver Synchronization     620

        10.1.1 Why We Must Synchronize     620

        10.1.2 Alignment at the Waveform Level and Bit Stream Level     620

        10.1.3 Carrier-Wave Modulation     620

        10.1.4 Carrier Synchronization     621

        10.1.5 Symbol Synchronization     624

        10.1.6 Eye Diagrams and Constellations     625

    10.2 Synchronous Demodulation     626

        10.2.1 Minimizing Energy in the Difference Signal     628

        10.2.2 Finding the Peak of the Correlation Function     629

        10.2.3 The Basic Analog Phase-Locked Loop (PLL)     631

        10.2.4 Phase-Locking Remote Oscillators     631

        10.2.5 Estimating Phase Slope (Frequency)     633

    10.3 Loop Filters, Control Circuits, and Acquisition     634

        10.3.1 How Many Loop Filters Are There in a System?     634

        10.3.2 The Key Loop Filters     634

        10.3.3 Why We Want R Times R-dot     634

        10.3.4 The Phase Error S-Curve     636

    10.4 Phase-Locked Loop Timing Recovery     637

        10.4.1 Recovering Carrier Timing from a Modulated Waveform     637

        10.4.2 Classical Timing Recovery Architectures     638

        10.4.3 Timing-Error Detection: Insight from the Correlation Function     641

        10.4.4 Maximum-Likelihood Timing-Error Detection     642

        10.4.5 Polyphase Matched Filter and Derivative Matched Filter     643

        10.4.6 Approximate ML Timing Recovery PLL for a 32-Path PLL     647

    10.5 Frequency Recovery Using a Frequency-Locked Loop (FLL)     652

        10.5.1 Band-Edge Filters     654

        10.5.2 Band-Edge Filter Non-Data-Aided Timing Synchronization     660

    10.6 Effects of Phase and Frequency Offsets     664

        10.6.1 Phase Offset and No Spinning: Effect on Constellation     665

        10.6.2 Slow Spinning Effect on Constellation     667

        10.6.3 Fast Spinning Effect on Constellation     670

    10.7 Conclusion     672

    Chapter 11  MULTIPLEXING AND MULTIPLE ACCESS     681

    11.1 Allocation of the Communications Resource     682

        11.1.1 Frequency-Division Multiplexing/Multiple Access     683

        11.1.2 Time-Division Multiplexing/Multiple Access     688

        11.1.3 Communications Resource Channelization     691

        11.1.4 Performance Comparison of FDMA and TDMA     692

        11.1.5 Code-Division Multiple Access     695

        11.1.6 Space-Division and Polarization-Division Multiple Access     698

    11.2 Multiple-Access Communications System and Architecture     700

        11.2.1 Multiple-Access Information Flow     701

        11.2.2 Demand-Assignment Multiple Access     702

    11.3 Access Algorithms     702

        11.3.1 ALOHA     702

        11.3.2 Slotted ALOHA     705

        11.3.3 Reservation ALOHA     706

        11.3.4 Performance Comparison of S-ALOHA and R-ALOHA     708

        11.3.5 Polling Techniques     710

    11.4 Multiple-Access Techniques Employed with INTELSAT     712

        11.4.1 Preassigned FDM/FM/FDMA or MCPC Operation     713

        11.4.2 MCPC Modes of Accessing an INTELSAT Satellite     713

        11.4.3 SPADE Operation     716

        11.4.4 TDMA in INTELSAT     721

        11.4.5 Satellite-Switched TDMA in INTELSAT     727

    11.5 Multiple-Access Techniques for Local Area Networks     731

        11.5.1 Carrier-Sense Multiple-Access Networks     731

        11.5.2 Token-Ring Networks     733

        11.5.3 Performance Comparison of CSMA/CD and Token-Ring Networks     734

    11.6 Conclusion     736

    Chapter 12  SPREAD-SPECTRUM TECHNIQUES     741

    12.1 Spread-Spectrum Overview     742

        12.1.1 The Beneficial Attributes of Spread-Spectrum Systems     742

        12.1.2 A Catalog of Spreading Techniques     746

        12.1.3 Model for Direct-Sequence Spread-Spectrum Interference Rejection     747

        12.1.4 Historical Background     748

    12.2 Pseudonoise Sequences     750

        12.2.1 Randomness Properties     750

        12.2.2 Shift Register Sequences     750

        12.2.3 PN Autocorrelation Function     752

    12.3 Direct-Sequence Spread-Spectrum Systems     753

        12.3.1 Example of Direct Sequencing     755

        12.3.2 Processing Gain and Performance     756

    12.4 Frequency-Hopping Systems     759

        12.4.1 Frequency-Hopping Example     761

        12.4.2 Robustness     762

        12.4.3 Frequency Hopping with Diversity     762

        12.4.4 Fast Hopping Versus Slow Hopping     763

        12.4.5 FFH/MFSK Demodulator     765

        12.4.6 Processing Gain     766

    12.5 Synchronization     766

        12.5.1 Acquisition     767

        12.5.2 Tracking     772

    12.6 Jamming Considerations     775

        12.6.1 The Jamming Game     775

        12.6.2 Broadband Noise Jamming     780

        12.6.3 Partial-Band Noise Jamming     781

        12.6.4 Multiple-Tone Jamming     783

        12.6.5 Pulse Jamming     785

        12.6.6 Repeat-Back Jamming     787

        12.6.7 BLADES System     788

    12.7 Commercial Applications     789

        12.7.1 Code-Division Multiple Access     789

        12.7.2 Multipath Channels     792

        12.7.3 The FCC Part     15 Rules for Spread-Spectrum Systems     793

        12.7.4 Direct Sequence Versus Frequency Hopping     794

    12.8 Cellular Systems     796

        12.8.1 Direct-Sequence CDMA     796

        12.8.2 Analog FM Versus TDMA Versus CDMA     799

        12.8.3 Interference-Limited Versus Dimension-Limited Systems     801

        12.8.4 IS-95 CDMA Digital Cellular System     803

    12.9 Conclusion     814

    Chapter 13  SOURCE CODING     823

    13.1 Sources     824

        13.1.1 Discrete Sources     824

        13.1.2 Waveform Sources     829

    13.2 Amplitude Quantizing     830

        13.2.1 Quantizing Noise     833

        13.2.2 Uniform Quantizing     836

        13.2.3 Saturation     840

        13.2.4 Dithering     842

        13.2.5 Nonuniform Quantizing     845

    13.3 Pulse Code Modulation     849

        13.3.1 Differential Pulse Code Modulation     850

        13.3.2 One-Tap Prediction     853

        13.3.3 N-Tap Prediction     854

        13.3.4 Delta Modulation     856

        13.3.5 S-D Modulation     858

        13.3.6 S-D A-to-D Converter (ADC)     862

        13.3.7 S-D D-to-A Converter (DAC)     863

    13.4 Adaptive Prediction     865

        13.4.1 Forward Adaptation     865

        13.4.2 Synthesis/Analysis Coding     866

    13.5 Block Coding     868

        13.5.1 Vector Quantizing     868

    13.6 Transform Coding     870

        13.6.1 Quantization for Transform Coding     872

        13.6.2 Subband Coding     872

    13.7 Source Coding for Digital Data     873

        13.7.1 Properties of Codes     875

        13.7.2 Huffman Code     877

        13.7.3 Run-Length Codes     880

    13.8 Examples of Source Coding     884

        13.8.1 Audio Compression     884

        13.8.2 Image Compression     889

    13.9 Conclusion     898

    Chapter 14  FADING CHANNELS     905

    14.1 The Challenge of Communicating over Fading Channels     906

    14.2 Characterizing Mobile-Radio Propagation     907

        14.2.1 Large-Scale Fading     912

        14.2.2 Small-Scale Fading     914

    14.3 Signal Time Spreading     918

        14.3.1 Signal Time Spreading Viewed in the Time-Delay Domain     918

        14.3.2 Signal Time Spreading Viewed in the Frequency Domain     920

        14.3.3 Examples of Flat Fading and Frequency-Selective Fading     924

    14.4 Time Variance of the Channel Caused by Motion     926

        14.4.1 Time Variance Viewed in the Time Domain     926

        14.4.2 Time Variance Viewed in the Doppler-Shift Domain     929

        14.4.3 Performance over a Slow- and Flat-Fading Rayleigh Channel     935

    14.5 Mitigating the Degradation Effects of Fading     937

        14.5.1 Mitigation to Combat Frequency-Selective Distortion     939

        14.5.2 Mitigation to Combat Fast-Fading Distortion     942

        14.5.3 Mitigation to Combat Loss in SNR     942

        14.5.4 Diversity Techniques     944

        14.5.5 Modulation Types for Fading Channels     946

        14.5.6 The Role of an Interleaver     947

    14.6 Summary of the Key Parameters Characterizing Fading Channels     951

        14.6.1 Fast-Fading Distortion: Case 1     951

        14.6.2 Frequency-Selective Fading Distortion: Case 2     952

        14.6.3 Fast-Fading and Frequency-Selective Fading

        Distortion: Case 3     953

    14.7 Applications: Mitigating the Effects of Frequency-Selective Fading     955

        14.7.1 The Viterbi Equalizer as Applied to GSM     955

        14.7.2 The Rake Receiver Applied to Direct-Sequence Spread-Spectrum (DS/SS) Systems     958

    14.8 Conclusion     960

    Chapter 15  THE ABCs OF OFDM (ORTHOGONAL FREQUENCY- DIVISION MULTIPLEXING)     971

    15.1 What Is OFDM?     972

    15.2 Why OFDM?     972

    15.3 Getting Started with OFDM     973

    15.4 Our Wish List (Preference for Flat Fading and Slow Fading)     974

        15.4.1 OFDM's Most Important Contribution to Communications over Multipath Channels     975

    15.5 Conventional Multi-Channel FDM versus Multi-Channel OFDM     976

    15.6 The History of the Cyclic Prefix (CP)     977

        15.6.1 Examining the Lengthened Symbol in OFDM     978

        15.6.2 The Length of the CP     979

    15.7 OFDM System Block Diagram     979

    15.8 Zooming in on the IDFT     981

    15.9 An Example of OFDM Waveform Synthesis     981

    15.10 Summarizing OFDM Waveform Synthesis     983

    15.11 Data Constellation Points Distributed over the Subcarrier Indexes     984

        15.11.1 Signal Processing in the OFDM Receiver     986

        15.11.2 OFDM Symbol-Time Duration     986

        15.11.3 Why DC Is Not Used as a Subcarrier in Real Systems     987

    15.12 Hermitian Symmetry     987

    15.13 How Many Subcarriers Are Needed?     989

    15.14 The Importance of the Cyclic Prefix (CP) in OFDM     989

        15.14.1 Properties of Continuous and Discrete Fourier Transforms     990

        15.14.2 Reconstructing the OFDM Subcarriers     991

        15.14.3 A Property of the Discrete Fourier Transform (DFT)     992

        15.14.4 Using Circular Convolution for Reconstructing an OFDM Subcarrier     993

        15.14.5 The Trick That Makes Linear Convolution Appear Circular     994

    15.15 An Early OFDM Application: Wi-Fi Standard 802.11a     997

        15.15.1 Why the Transform Size N Needs to Be Larger Than the Number of Subcarriers     999

    15.16 Cyclic Prefix (CP) and Tone Spacing     1000

    15.17 Long-Term Evolution (LTE) Use of OFDM     1001

        15.17.1 LTE Resources: Grid, Block, and Element     1002

        15.17.2 OFDM Frame in LTE     1003

    15.18 Drawbacks of OFDM     1006

        15.18.1 Sensitivity to Doppler     1006

        15.18.2 Peak-to-Average Power Ratio (PAPR) and SC-OFDM     1006

        15.18.3 Motivation for Reducing PAPR     1007

    15.19 Single-Carrier OFDM (SC-OFDM) for Improved PAPR Over Standard OFDM     1007

        15.19.1 SC-OFDM Signals Have Short Mainlobe Durations     1010

        15.19.2 Is There an Easier Way to Implement SC-OFDM?     1011

    15.20 Conclusion     1012

    Chapter 16  THE MAGIC OF MIMO (MULTIPLE INPUT/MULTIPLE OUTPUT)     1017

    16.1 What is MIMO?     1018

        16.1.1 MIMO Historical Perspective     1019

        16.1.2 Vectors and Phasors     1019

        16.1.3 MIMO Channel Model     1020

    16.2 Various Benefits of Multiple Antennas     1023

        16.2.1 Array Gain     1023

        16.2.2 Diversity Gain     1023

        16.2.3 SIMO Receive Diversity Example     1026

        16.2.4 MISO Transmit Diversity Example     1027

        16.2.5 Two-Time Interval MISO Diversity Example     1028

        16.2.6 Coding Gain     1029

        16.2.7 Visualization of Array Gain, Diversity Gain, and Coding Gain     1029

    16.3 Spatial Multiplexing     1031

        16.3.1 Basic Idea of MIMO-Spatial Multiplexing (MIMO-SM)     1031

        16.3.2 Analogy Between MIMO-SM and CDMA     1033

        16.3.3 When Only the Receiver Has Channel-State Information (CSI)     1033

        16.3.4 Impact of the Channel Model     1034

        16.3.5 MIMO and OFDM Form a Natural Coupling     1036

    16.4 Capacity Performance     1037

        16.4.1 Deterministic Channel Modeling     1038

        16.4.2 Random Channel Models     1040

    16.5 Transmitter Channel-State Information (CSI)     1042

        16.5.1 Optimum Power Distribution     1044

    16.6 Space-Time Coding     1047

        16.6.1 Block Codes in MIMO Systems     1047

        16.6.2 Trellis Codes in MIMO Systems     1050

    16.7 MIMO Trade-Offs     1051

        16.7.1 Fundamental Trade-Off     1051

        16.7.2 Trade-Off Yielding Greater Robustness for PAM and QAM     1052

        16.7.3 Trade-Off Yielding Greater Capacity for PAM and QAM     1053

        16.7.4 Tools for Trading Off Multiplexing Gain and Diversity Gain     1054

    16.8 Multi-User MIMO (MU-MIMO)     1058

        16.8.1 What Is MU-MIMO?     1059

        16.8.2 SU-MIMO and MU-MIMO Notation     1059

        16.8.3 A Real Shift in MIMO Thinking     1061

        16.8.4 MU-MIMO Capacity     1067

        16.8.5 Sum-Rate Capacity Comparison for Various Precoding Strategies     1081

        16.8.6 MU-MIMO Versus SU-MIMO Performance     1082

    16.9 Conclusion     1083

    INDEX     1089



    ONLINE ONLY:

    Chapter 17  Encryption and Decryption

    Appendix A  A Review of Fourier Techniques

    Appendix B  Fundamentals of Statistical Decision Theory

    Appendix C  Response of a Correlator to White Noise

    Appendix D  Often-Used Identities

    Appendix E  S-Domain, Z-Domain, and Digital Filtering

    Appendix F  OFDM Symbol Formation with an N-Point Inverse Discrete Fourier Transform (IDFT)

    Appendix G  List of Symbols