Published by Pearson (July 29, 2024) © 2024

James Shackelford
    Pearson eTextbook (180 Days access)
    €32,99
    Adding to cart… The item has been added
    ISBN-13: 9781292742052

    Introduction to Materials Science for Engineers, Global Edition -- Pearson eText (OLP) 180 days Subscription ,9th edition

    Language: English

    For a first course in Materials Sciences and Engineering taught in the departments of materials science, mechanical, civil and general engineering.

    Introduction to Materials Science for Engineers provides balanced, current treatment of the full spectrum of engineering materials, covering all the physical properties, applications and relevant properties associated with engineering materials. It explores all of the major categories of materials while also offering detailed examinations of a wide range of new materials with high-tech applications.

    Revised to reflect recent data and trends, the 9th Edition includes updated computer-generated crystal structure illustrations and new end-of-chapter conceptual problems.

    1. Materials for Engineering
      • 1.1 The Material World
      • 1.2 Materials Science and Engineering
      • 1.3 Six Materials That Changed Your World
        • STEEL BRIDGES—INTRODUCING METALS
        • TRANSPARENT OXIDES—INTRODUCING CERAMICS
        • SMARTPHONES AND TABLETS—INTRODUCING GLASSES
        • NYLON PARACHUTES—INTRODUCING POLYMERS
        • KEVLAR®-REINFORCED TIRES—INTRODUCINGCOMPOSITES
        • SILICON CHIPS—INTRODUCING SEMICONDUCTORS
      • 1.4 Processing and Selecting Materials
      • 1.5 Looking at Materials by Powers of Ten

    PARTI: The Fundamentals

    1. Atomic Bonding
      • 2.1 Atomic Structure
      • 2.2 The Ionic Bond
      • COORDINATION NUMBER
      • 2.3 The Covalent Bond
      • 2.4 The Metallic Bond
      • 2.5 The Secondary, or van der Waals, Bond
      • 2.6 Materials—The Bonding Classification
    1. Crystalline Structure—Perfection
      • 3.1 Seven Systems and Fourteen Lattices
      • 3.2 Metal Structures
      • 3.3 Ceramic Structures
    1. Crystal Defects and Noncrystalline Structure—Imperfection
      • 4.1 The Solid Solution—Chemical Imperfection
      • 4.2 Point Defects—Zero-Dimensional Imperfections
      • 4.3 Linear Defects, or Dislocations—One-Dimensional Imperfections
      • 4.4 Planar Defects—Two-Dimensional Imperfections
      • 4.5 Noncrystalline Solids—Three-Dimensional Imperfections
    1. Diffusion
      • 5.1 Thermally Activated Processes
      • 5.2 Thermal Production of Point Defects
      • 5.3 Point Defects and Solid-State Diffusion
      • 5.4 Steady-State Diffusion
      • 5.5 Alternate Diffusion Paths
    1. Mechanical Behavior
      • 6.1 Stress Versus Strain
      • METALS
      • CERAMICS AND GLASSES
      • POLYMERS
      • 6.2 Elastic Deformation
      • 6.3 Plastic Deformation
      • 6.4 Hardness
      • 6.5 Creep and Stress Relaxation
      • 6.6 Viscoelastic Deformation
      • INORGANIC GLASSES
      • ORGANIC POLYMERS
      • ELASTOMERS
    1. Thermal Behavior
      • 7.1 Heat Capacity
      • 7.2 Thermal Expansion
      • 7.3 Thermal Conductivity
      • 7.4 Thermal Shock
    1. Failure Analysis and Prevention
      • 8.1 Impact Energy
      • 8.2 Fracture Toughness
      • 8.3 Fatigue
      • 8.4 Nondestructive Testing
      • 8.5 Failure Analysis and Prevention
    1. Phase Diagrams—Equilibrium Microstructural Development
      • 9.1 The Phase Rule
      • 9.2 The Phase Diagram
      • COMPLETE SOLID SOLUTION EUTECTIC DIAGRAM WITH NO SOLID SOLUTION
      • EUTECTIC DIAGRAM WITH LIMITED SOLID SOLUTION
      • EUTECTOID DIAGRAM
      • PERITECTIC DIAGRAM
      • GENERAL BINARY DIAGRAMS
      • 9.3 The Lever Rule
      • 9.4 Microstructural Development During Slow Cooling
    1. Time—The Third Dimension
      • 10.1 Time—The Third Dimension
      • 10.2 The TTT Diagram
      • DIFFUSIONAL TRANSFORMATIONS
      • DIFFUSIONLESS (MARTENSITIC) TRANSFORMATIONS
      • HEAT TREATMENT OF STEEL
      • 10.3 Hardenability
      • 10.4 Precipitation Hardening
      • 10.5 Annealing
      • COLD WORK
      • RECOVERY
      • RECRYSTALLIZATION
      • GRAIN GROWTH
      • 10.6 The Kinetics of Phase Transformations for Nonmetals

    PART II: Materials and Their Applications

    1. Structural Materials—Metals, Ceramics, and Glasses
      • 11.1 Metals
      • FERROUS ALLOYS
      • NONFERROUS ALLOYS
      • 11.2 Ceramics and Glasses
      • CERAMICS—CRYSTALLINE MATERIALS
      • GLASSES—NONCRYSTALLINE MATERIALS
      • GLASS-CERAMICS
      • 11.3 Processing the Structural Materials
      • PROCESSING OF METALS
      • PROCESSING OF CERAMICS AND GLASSES
    1. Structural Materials—Polymers and Composites
      • Polymers
      • POLYMERIZATION
      • STRUCTURAL FEATURES OF POLYMERS
      • THERMOPLASTIC POLYMERS
      • THERMOSETTING POLYMERS
      • ADDITIVES
      • 12.2 Composites
      • FIBER-REINFORCED COMPOSITES
      • AGGREGATE COMPOSITES
      • PROPERTY AVERAGING
      • MECHANICAL PROPERTIES OF COMPOSITES
      • 12.3 Processing the Structural Materials
      • PROCESSING OF POLYMERS
      • PROCESSING OF COMPOSITES
    1. Electronic Materials
      • 13.1 Charge Carriers and Conduction
      • 13.2 Energy Levels and Energy Bands
      • 13.3 Conductors
      • THERMOCOUPLES
      • SUPERCONDUCTORS
      • 13.4 Insulators
      • FERROELECTRICS
      • PIEZOELECTRICS
      • 13.5 Semiconductors
      • INTRINSIC, ELEMENTAL SEMICONDUCTORS
      • EXTRINSIC, ELEMENTAL SEMICONDUCTORS
      • COMPOUND SEMICONDUCTORS
      • PROCESSING OF SEMICONDUCTORS
      • SEMICONDUCTOR DEVICES
      • 13.6 Composites
      • 13.7 Electrical Classification of Materials
    1. Optical and Magnetic Materials
      • 14.1 Optical Materials
      • OPTICAL PROPERTIES
      • OPTICAL SYSTEMS AND DEVICES
      • 14.2 Magnetic Materials
      • FERROMAGNETISM
      • FERRIMAGNETISM
      • METALLIC MAGNETS
      • CERAMIC MAGNETS
    1. Materials in Engineering Design
      • 15.1 Material Properties—Engineering Design Parameters
      • 15.2 Selection of Structural Materials—Case Studies
      • MATERIALS FOR HIP- AND KNEE-JOINT REPLACEMENT
      • METAL SUBSTITUTION WITH COMPOSITES
      • 15.3 Selection of Electronic, Optical, and Magnetic Materials—Case Studies
      • LIGHT-EMITTING DIODE
      • GLASS FOR SMART PHONE AND TABLET TOUCHSCREENS
      • AMORPHOUS METAL FOR ELECTRIC-POWERDISTRIBUTION
      • 15.4 Materials and Our Environment
      • ENVIRONMENTAL DEGRADATION OF MATERIALS
      • ENVIRONMENTAL ASPECTS OF DESIGN RECYCLING AND REUSE
    • APPENDIX1: Physical and Chemical Data for the Elements
    • APPENDIX 2: Atomic and Ionic Radii of the Elements
    • APPENDIX 3: Constants and Conversion Factors and the Periodic Table of Elements
    • APPENDIX 4: Properties of the Structural Materials
    • APPENDIX 5: Properties of the Electronic, Optical, and Magnetic Materials
    • APPENDIX 6: Glossary Answers to Practice Problems (PP) and Odd-Numbered Problems Index